

Dragan Pleskonjic

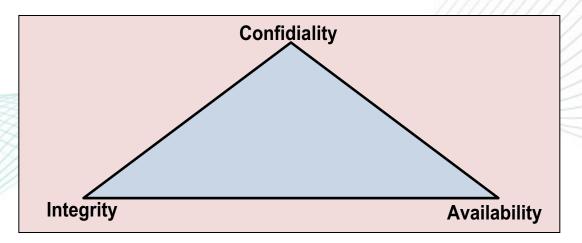
Predict - Prepare - Prevent - Detect

PARADIGM SHIFT IN INFORMATION SECURITY AND PRIVACY WITH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Dragan Pleskonjic

INPRESEC INITIATOR / FOUNDER

- Rich experience in creating and managing start-ups, new businesses development
- Leading management positions in international corporations
- Expertise in information security, computer software and networks industry
- Prolific academic career: Adjunct Professorship, authorship of books, scientific papers and journals' articles
- Scientific and security leader, researcher, advisor, architect
- Inventor with a set of U.S. patents granted and several patent applications pending (USPTO, CIPO, EPO, WIPO)
- Entrepreneur, leader, motivator, visionary


Information Security

- Information security is complicated, and hard to get right. I'm an expert in the field, and it's hard for me. It's hard for the director of the CIA. And it's hard for you.
 - Bruce Schneier, called a "security guru" by The Economist
- Machine learning plays a part in every stage of your life.

Pedro Domingos, Professor and author of book:

— "The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World"

- Confidentiality, Integrity, Availability (CIA)
 - + authenticity, accountability, nonrepudiation, reliability
- DAD Disclosure, Alteration Destruction

SQL Injection on car license plates

THREATS

ATTACK METHODOLOGY

METHODOLOGIES USED TO ATTACK A TARGET AND POTENTIAL TOOLS/TECHNIQUES THAT CAN BE USED TO CONDUCT THE ATTACK

RECON

SCANNERS SNIFFERS PACKET CRAFTERS

ATTACK

EXPLOIT VULNERABILITIES COMPROMISE APPLICATIONS **CRACK PASSWORDS**

EXPLOIT

CONFIDENTIALITY INTEGRITY AVAILABILITY

SOCIAL ENGINEERING

VIA TECHNOLOGY VIA HUMAN

ROOTKIT

PHISHING

TOOLS AND TECHNIQUES

NESSUS WEB ATTACKS PHYSICAL THREAT METASPLOIT WORMS SOCIAL NETWORKS ZOMBIES BACKDOORS VIRUSES **SQL ATTACK** CAIN AND ABEL **CROSS-SITE SCRIPTING** WIRELESS SPEAR PHISHING SPAM **PHARMING** MOBILE WIRESHARK **BUFFER OVERFLOW DATABASE ATTACKS**

TROJAN HORSE

DISTRIBUTED DENIAL OF

SERVICE

ATTACKERS

TYPES OF THREATS

CYBER

WARFARE

ESPIONAGE

RUSSIAN BUSINESS NETWORK

RUSSIA

PHISHING

NIGERIAN

SCAMS

DISGRUNTLED

POLITICAL

FINANCIALLY

MOTIVATED

ADVANCED PERSISTENT

THREAT (APT)

DIGITAL

SPYING

CHINA

ORGANIZED CRIME

INSIDERS

UNINTENTIONAL

CULTURAL

GROUP MEMBERSHIP

ENTERTAINMENT

SCRIPT KIDDIES

TERRORIST

STATUS

HACKTIVISM

CUSTOM BANK ATTACKS

RELIGIOUS

NATIONAL PRIDE

SOCIAL HACKING

CURIOSITY

CHALLENGE

DEFENSIVE MOUNTAIN RANGE

DIFFERENT WAYS TO PROTECT OUR SYSTEMS

DEFENSE-IN-DEPTH TOOLS

THE CYBER THREAT

LANDSCAPE

ENCRYPTION INTRUSION PREVENTION SYSTEM **FIREWALLS** ANTI-VIRUS METRICS

SECURITY OPERATIONS CENTER

INCIDENT RESPONSE TEAM **VULNERABILITY ASSESSMENTS PENETRATION TESTS** LOG CORRELATION **FORENSICS**

CONFIGURATION MANAGEMENT

PATCHING POLICIES ACCESS CONTROL

IDENTITY MANAGEMENT

AUTHENTICATE AUTHORIZE AUDIT / COMPLIANCE

RISK MANAGEMENT

SITUATIONAL AWARENESS **DISASTER RECOVERY CONTINUITY OF OPERATIONS** DUE CARE / DILIGENCE

KEY EDUCATION TECHNIQUES

TRAINING APPLIED GUIDANCE CAMPAIGNS

TARGETED CAPABILITIES

SYSTEMS AND INFORMATION TO PROTECT

HEADQUARTERS

PRODUCTION SITES

DCA

MANUFACTURING

CRITICAL INFRASTRUCTURE

E-MAIL

TRADE SECRET

ORGANIZATION

DEVELOPMENT HUBS

POLICIES

CORPORATE

FINANCE

PROPRIETARY

PROPOSALS

CREDIT CARD

SPENDING HABITS

BANK

PERSONAL

CREDIT

HEALTH

SOCIAL **NETWORKS**

WINDOWS

APPLICATIONS

VolP

INFORMATION **TECHNOLOGY**

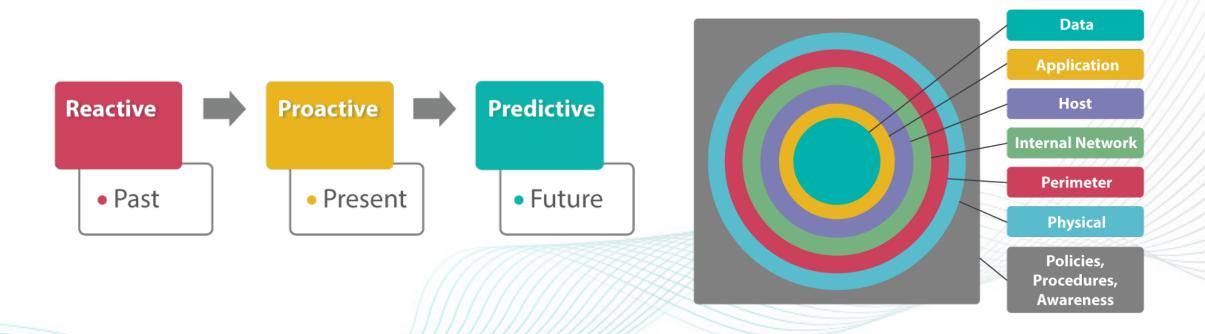
CLOUD

CONFIGURATION

WEB PAGES

ARCHITECTURE

The Problem



- Number of security breaches is rapidly increasing
- Organizations are not able to cope with all of threats, attacks and risks any more:
 - significant amount of manual work
 - lack of focus and concentration leading to errors
 - lack of skilled professionals and tools
 - increasing cost
- There is no true predictive approach on the market!
- Late detection costs of breach are skyrocketing!

Shift the Paradigm and Defense in Depth

Defense in Depth Layers

Our Approach

• INPRESEC's
INTELLIGENT PREDICTIVE SECURITY

Artificial Intelligence

Machine Learning

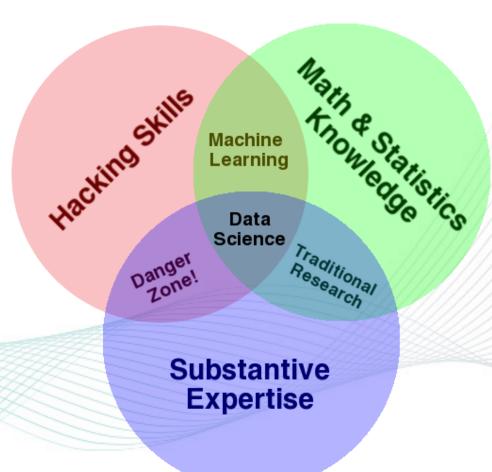
Predictive Analytics

Big Data

Threat Intelligence

BETTER INFORMATION SECURITY

CHALLENGES WE ARE ADDRESSING


Classification **Prediction**

- Supervised
- Unsupervised
- Reinforcement Learning

 Principal Component Analysis (PCA)

Source: http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

- Keras: The Python Deep Learning library
 - TensorFlow An open-source software library for Machine Intelligence
 - Theano Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.
- scikit-learn Machine Learning in Python
- Matlab Statistics and Machine Learning Toolbox
- Weka Collection of machine learning algorithms for data mining tasks.
- NeuroSolutions Neural Network Software
- Apache Mahout™ Scalable machine learning and data mining
- Appache Spark™ Machine Learning Library (MLlib) scalable machine learning library consisting of common learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as underlying optimization primitives

•

Our Solution

- Classification of events ALLOWED/NOT ALLOWED
 Action based on the result
- Common Platform & modules for:
 - Intrusion
 - Data Leak
 - Fraud
 - Malware
 - Malfunction
 - **–** ...
- Prediction

Solution components:

SENSOR, AGENT,
SERVER, ADMIN,
TRAINER, PREDICTION MODULE

Deployment:

- Service model: Security as an INPRESEC hosted and managed service
- Product model: hosted by client, serviced by us

Key INPRESEC Solution Elements

Patent applications in progress

INPRESEC SENSOR

 Software, can be appliance analyses network traffic & possible security violations, classification based on Machine Learning (ML) - network-based system

INPRESEC SERVER

- Software integrates functions of sensors & agents
- Collects data from Sensors & Agents, analysis, classifying, learning & correlation and actions, based on ML
- Can be linked to SOC / CERT centers or to other security elements (AV, DLP, SIEM,...)

INPRESEC TRAINER

Software – training system based on ML

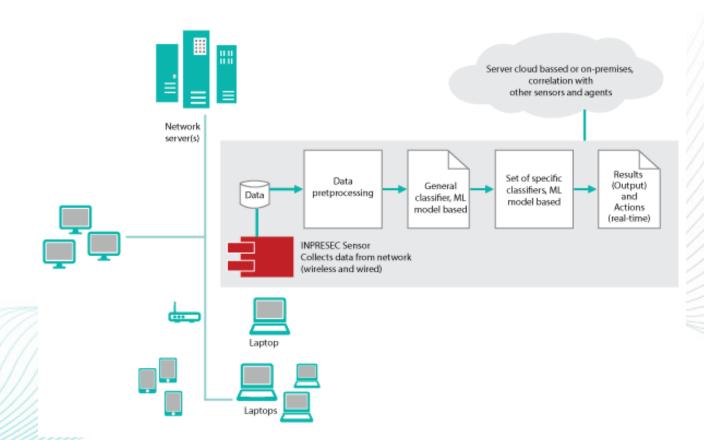
INPRESEC AGENT

Software installed on a computer (server, desktop, laptop), mobile device (smart phone, tablet etc.) or network devices (routers, firewalls, etc.), classification based on ML – host based system

INPRESEC ADMIN

- Dashboard, Configuration Console, Management, Monitoring & Reporting Tools.
- Sends alerts or other info through various communication means

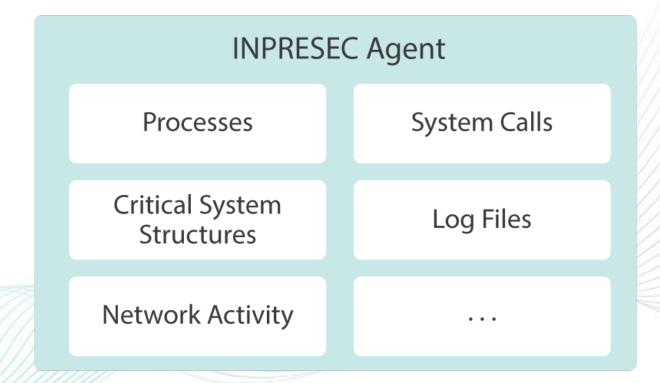
INPRESEC PREDICTION MODULE


- Software data feed with probabilities of security events in future,
- Prediction based on various data sources, Threat Intelligence (TI), predictive analytics and ML

Solution Components - Sensor

SENSOR, AGENT,
SERVER, ADMIN,
TRAINER, PREDICTION MODULE

 Software, can be appliance analyses network traffic & possible security violations, classification based on Machine Learning (ML) network-based system



SENSOR, AGENT, TRAINER
SERVER, ADMIN,
TRAINER, PREDICTION MODULE

 Software installed on a computer (server, desktop, laptop), mobile device (smart phone, tablet etc.) or network devices (routers, firewalls, etc.), classification based on ML – host based system

SENSOR, AGENT, TRAINER

SERVER, ADMIN,

Trainer, Prediction Module

- Software integrates functions of sensors & agents
 - Collects data from Sensors & Agents, analysis, classifying, learning & correlation and actions, based on ML
 - Can be linked to SOC / CERT centers or to other security elements (AV, DLP, SIEM,...)

SENSOR, AGENT,

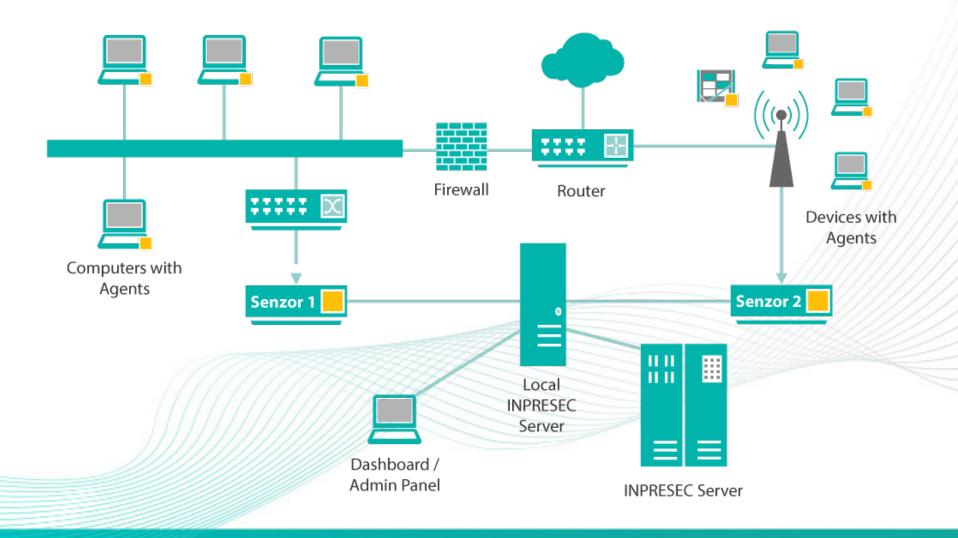
SERVER, ADMIN,

TRAINER, PREDICTION MODULE

- Software Dashboard, Configuration Console,
 Management, Monitoring & Reporting Tools.
 - Sends alerts or other info through various communication means

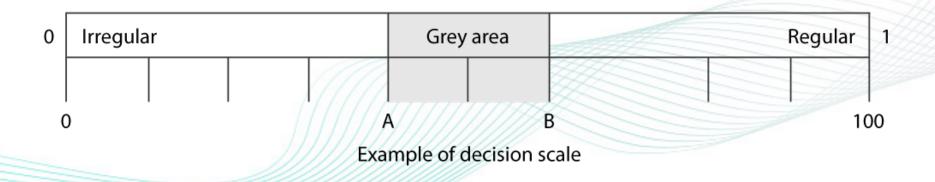
Solution Components – Trainer and Prediction Module C

SENSOR, AGENT, SERVER, ADMIN, TRAINER, PREDICTION MODULE


- **Software** training system based on ML
 - Uses "security analyst in the loop" annotations as additional input to datasets
 - Creates new models based on inputs from live system and annotated vectors
 - When new model with better accuracy is created, posts it to server for download by sensors and agents
 - By machine learning, system provides continual improvement adapting to variety of threats, attacks, as well as specific requirements that customers may have.

SENSOR, AGENT, SERVER, ADMIN, TRAINER, PREDICTION MODULE

- **Software** data feed with probabilities of security events in future,
 - Prediction based on various data sources, Threat Intelligence (TI), predictive analytics and ML
 - Using various parameters and input data from set of internal and external sources, it analyses them and, through set of our proprietary algorithms, gives probabilities of possible threats and attacks.
 - These data will be later distributed as input to our system and help to set alert levels, thresholds, prevention measures etc.


Possible Network Layout

Machine Learning -> Increased Efficiency

- "Security analyst in the loop" concept
 - Supervised learning solution becomes more and more clever during time and requires less human intervention
- Decrease grey area during time, eventually to reach A = B
- Team focuses and more innovative and interesting work

Datasets – how to obtain/create

- Various IDS/IPS data sets and test vectors available on Internet
- Created by us from:
 - Testing environments
 - Real environments
- Created by us dataset generation scripts:
 - "clean" ones i.e. regular, no intrusions or other issues
 - With anomalies, attack, intrusions, data leaks, malware and similar malfunctions

Labeled dataset example (redacted)

al A	В (D D	E	F	G	Н	1	J	K	L	M	M N	(0 P	0		R	S	T	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ /	K A	L	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV
1 Fig.			-,-	,																																							4				
	.00073 1.4		11 37109		-1	1 535	7 -1	1 -:	1	0	0	-1	0	-1	0	64	128	7	4	3	1039	320			87 263736			0	0	0	0	0	8241.76	4120.88 27	47.25	5	6	29312	66560	2.8E+09	4.2E+09	0.00045	2.1E-05	0.00043	80	239.667 a	
3 2 0	.14077 1.4		11 36771		-1	1 -	1 -1	1 443	3	0	0	-1	0	-1	0	64	50	10	5	5	914	325	589	41599.	.5 14775.	8 26823.	7 0	0	0	0	0	0	63.9336	28.4149 28	3.4149	5	13	40832	16896	1.8E+08	1E+09	0.11132	2 0.1115	1.6E-05			
4 2	0 1.4		11 27170	-1	-1	1 -	1 -1	1 80	0	0	-1	-1	0	-1	-1	215	-1	1	1	0	62	62	() (0	0 (0 0	0	0	0	0	0	0	0	0	5	11	32	-1	9.2E+08	-1	0) (0 (0 62		anomaly
5 3	0 1.4		5 -1	-1	-1	1 -:	1 -1	1 -:	1 19	.92	-1	-1	6	-1	-1	1	-1	1	1	0	46	46		3 /	0	0 (0 0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	-1	0) (0 0	0 46		normal
	.08838 1.4		11 43149	-1	-1	1 -	1 -1	1 593	1	0	0	-1	0	-1	0	64	63	5	2	3	987	633	354		.4 28695.		5 0	0	0	0	0			11.3154 22	2.6308	5	3 2	88896	32512	4E+09	2.2E+09	0.00015	5 0.00014	1.2E-05	5 316.5	118 n	iormal
	46421 1.4		4 -1	8	-1	1 -:	1 16896	6 -:	1	0	-1	-1	0	-1	-1	254	-1	3	3	0	222	222	(79 480.47		0 0	0	0	0	-1		0.81162		0	5	4	-1	-1	-1	-1	0) (0 0	0 74		anomaly
	.68369 1.4		4 -1		-1	1 -:	16896	6 -:	1	0	-1	-1	0	-1	-1	54	-1	4	4	0	296	296			25 482.12		0 0	0	0	0	-1		0.8144		0	5	4	-1	-1	-1	-1	0) (0 0	0 74		anomaly
	.88162 1.4		11 60547		-1	1 -	1 -1	1 80	0	0	0	-1	0	-1	0	64	250	85	43	42	60690	3359			19 29772.		6 0	0	0	0	0		95.279		5.5052	5	6 1	38368	8176	1.4E+09	3.5E+09	0.03555	0.03554	4 5E-06	78.1163	1365.02 n	
10 2 0	24486 1.4		12 58508	-1	-1	1 370	2 -1	1 -	1	0	-1	-1	0	-1	-1	1	-1	2	2	0	2308	2308	(37702.5	.9 37702.	.9 (0 0	0	0	0	-1	-1	4.08393	4.08393	0	5	7	-1	-1	-1	-1	0) (0 (1154		normal
11 2	0 1.4		11 11591	-1	-1	1 -	1 -1	1 80	0	0	-1	-1	0	-1	-1	221	-1	1	1	0	78	78		1 1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		6.8E+08	-1	0	J C	0 0	0 78		anomaly
12 2	0 1.4		11 28320		-1	1 -	-1	1 80	0	0	-1	-1	0	-1	-1	17	-1	1	1	0	78	78	(1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		8.4E+08	-1	0) (0 0	0 78		anomaly
13 2	0 1.4		11 32246		-1	1 -:	-1	1 80	0	0	-1	-1	0	-1	-1	138	-1	1	1	0	74	74	(1 1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0	-1	9.5E+08	-1	0		0 0	0 74		anomaly
14 2	0 1.4		11 27373	-1	-1	1 -	-1	1 80	0	0	-1	-1	0	-1	-1	213	-1	1	1	0	78	78		1 1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0	-1	2E+09	-1	0	J C	0 0	0 78		anomaly
15 2	0 1.4		11 29997	-1	-1	1 -	-1	1 80	0	0	-1	-1	0	-1	-1	109	-1	1	1	0	74	74	(0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		1.6E+09	-1	0		0 0	0 74		anomaly
16 1	0 1.5		7 -1	195	-1	1 -	1 13	3 -:	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	0	66	66	(1	0	0 (0 0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	-1	0		0 0	0 66		normal
17 2 1	1.1E-05 1.4		11 63784	_	-1	1 1025	2 -1	1 -	1	0	0	-1	0	-1	0	64	128	2	1	1	116	62	54	4 1	0	0 (0 0	0	0	0	0	0	90909.1	0	0	5	13	4096		3.6E+08	-1	0	J C	0 0	0 62		anomaly
18 2	0 1.4		11 16084	-1	-1	1 -	-1	1 80	0	0	-1	-1	0	-1	-1	77	-1	1	1	0	62	62	(1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		1.8E+09	-1	0	J C	0 0	0 62		anomaly
	3.3E-05 1.4		11 35978	-1	-1	1 972	5 -1	1 -:	1	0	0	-1	0	-1	0	53	128	2	1	1	114	60	54	4 /	0	0 (0 0	0	0	0	0	0	30303	0	0	5	13	1024		1.1E+09	-1	0	J (0 0	0 60		anomaly
20 2	2E-06 1.4		11 47808		-1	1 175	1 -1	1 -	1	0	0	-1	0	-1	0	64	64	2	1	1	128	74	54	4 (0	0 (0 0	0	0	0	0	0	500000	0	0	5	13 37	37600		3.7E+08	-1	0	J C	0 0	0 74		anomaly
21 2	0 1.5		11 60909	_	-1	1 793	7 -1	1 -	1	0	-1	-1	0	-1	-1	64	-1	1	1	0	74	74	(1 1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		8.1E+08	-1	- 0	J C	0 0	0 74		anomaly
22 2	0 1.4		11 10451	-1	_	1 -:	1 -1	1 80	0	0	-1	-1	0	-1	-1	138	-1	1	1	0	74	74	(1 1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		1.2E+09	-1	0	J (0 0	0 74		anomaly
23 2	0 1.4		11 28071	-1		1 -	1 -1	1 80	0	0	-1	-1	0	-1	-1	49	-1	1	1	0	62	62	(1 1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0	-1	6.2E+08	-1	0) (0 0	0 62		anomaly
24 1	0 1.4		7 -1	26	_	1 -	1 45	5 -	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	0	66	66	(1 1	0	0 (0 0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	-1	0	, ,	0 0	0 66		normal
25 2	0 1.5		11 57647			1 1179	-1	1 -	1	0	-1	-1	0	-1	-1	64	-1	1	1	0	74	74	(1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		3.9E+09	-1	0	, ,	0 0	0 74		anomaly
26 2	0 1.4		11 32126			1 -	1 -1	1 80	0	0	-1	-1	0	-1	-1	187	-1	1	1	0	78	78	(1 1	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0	-1	1.2E+09	-1	0) (0 0	0 78		anomaly
27 1	0 1.5		7 -1	26	-1	1 -	41	1 -	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	0	90	90	(0	0 (0 0	0	0	0	-1	-1	0	0	0	5	7	-1	-1	-1	-1	0	, ,	0 0	0 90		normal
	79801 1.4		4 -1	8	-1	1 -	1 16896	6 -:	1	0	-1	-1	0	-1	-1	234	-1	4	4	0	296	296	(13 467.61		0 0	0	0	0	-1	-1	0.78989	0.78989	0	5	4	-1	-1	-1	-1	0	, ,	0 0	0 74		anomaly
	.22888 1.4		12 -1	-	2049	9 1900	-1	1 -	1	0	-1	-1	0	-1	-1	4	-1	13	13	0	4598	4598			.9 27634.		0 0	0	0	0	-1	-1	9.765	9.765	0	5	11	-1	-1	-1	-1	0			0 353.692		normal
	4.5358 1.5		11 48455		-1	1 -		1 80	0	0	0	-1	0	-1	0	64	56	4	2	2	252	132			32 116.40			0	0	0	0			0.22047 0.		5	13 1						4 0.03332				normal
	12742 1.4		11 34375	-1	-1	1 -	-1	1 59:	1	0	0	-1	0	-1	0	64	63	7	4	3	1890	810			.8 38172.		8 0	0	0	0	0			23.5436 15	0.6958	5	3	32128	6912	1.3E+08	2.1E+09	0.00092	2 0.00092	92 2E-06			normal
32 2 3	.67584 1.4		4 -1	8	-1	1 -	1 16896	5 -	1	0	-1	-1	0	-1	-1	58	-1	4	4	0	296	296		483.15	55 483.15	5 (0 0	0	0	0	-1	-1	0.81614	0.81614	0	5	4	-1	-1	-1	-1			0 0	0 74		anomaly
33 2	0 1.4		11 29984	-1	-1	1	10000	1 80	4	0	-1	-1	0	-1	-1	228	-1	1	1	0	74	74		0 404 77	0 404 71	0 (0 0	0	0	0	0	0	0	0 04070	0	5	11	32768	-1	6E+08	-1	0		0 0	0 74		anomaly
34 2 2	45784 1.4		4 -1	8	-1	1 -	16896	b -:	1	0	-1	-1	0	-1	-1	222	-1	3	3	0	222 62	222		481.72	24 481.72	4 (0 0	0	0	0	-1	-1	0.81372	0.81372	0	5	4	-1	-1	-1	-1	0	, ,	0 0	0 74 0 62		anomaly
26 2	0 1.4		11 13530	-1	-1	1 -	-1	1 80	1		-1	-1	0	-1	-1	159	-1	1	1	0	62	62			0	0 (0 0	0	0	0	0	0	0	0	0	5	11	8192	-1	1.8E+09	-1	0		0	0 62		normal
27 2 4			2 -1	-1	-1	2	-1	1 -	2	-1	-1	-1	-1	-1	-1	-1	-1	1	1 0	0	180	180		0 200 47	27 238.42	0 (0 0	0	0	0	-1	-1	0.40672	0.40673	0	6	11	-1	-1	-1	-1	0		0	0 60		normal normal
	02639 1.4		7 -1 12 47889	-1		1	-1	1 -	2	-1	-1	-1	-1	-1	-1	-1	-1	3	3	0	180 264	180	170	238.42	0 238.42	0	0 0	0	0	0	-1	-1	0.49672	0.49672	0	3	11	-1	-1	-1	-1	0	0	0	D 85		
30 2 0	01133 1.4		12 4/889		- 1	1	-	1 80	0	0	1	-1	0	-1		165	60	2	1	1	74	74	1/5	,	0	0 (0 0	0	0	0	-1	-1	88.269	0	0	-	3	-1	-1	1.75,00	-1	0		0	0 85		
40 2	0 1.4		11 20254		-1	1	-	1 80	0	0	-1	-1	0	-1	-1	165	-1	1	1	0	62	/4			0	0 (0 0	0	0	0	0	0	0	0	0	5	11	93		1.7E+09 1.1E+09	-1			0	0 74		anomaly anomaly
41 2 1	22892 1.4		11 141/3	-1	2049	9 190	-1	1 80	1	0	-1	-1	0	-1	-1	4	-1	13	13	0	4598	4598		0 27634	34 2763	4	0 0	0	0	0	-1	-1	9.76466	0.76466	0	5	11	32	-1	1.15+09	-1		0	0	0 353.692		normal
	.00078 1.4		11 50673	-1	2049	1 190		1 50	1	0	-1	-1	0	-4	-1	128	-1	13	13	0	4598 121	4598		2/634	0 2/63	0	0 0	0	0	33.3333	-1	-1	1283.7	9.76466	0	5	11	-1	7206	3.8E+08	1.25+00	0.00047	2 0.0002	0 0 35 7.7E-05			normal
45 70 0	0 1.4		6 135	_	-1	1		1 59	1	0	-1	-1	0	-1	-1	255	-1	1	1		86	22	00		0	0	0 0	0	0 :	0.0000	-1	-1	1465.7	0	0	5	9	-1	7290	3.00108	1.20+08	0.00043	0.00035	0 7.76-05	0 86		normal
44 2 4	2.7E-05 1.4		11 33608			1 200	, -,	1 -	1	0	-1	-1	0	-1	0	64	128	2	1		128	74	54	4	0	0 1	0 0	0	0	0	-1	-1	37037	0	0	5	13	1152	-1	7.2E+08	-1	,		0	0 74		anomaly
	.11683 1.4		11 45691	-1		1 200		1 80	0	0	0	-1	0	-4	0	64	52	2	2	1	214	140		,	45 4793.4		0 0	0	0	0	0	0	17.1195	9 55074	0	5				7.2E+08 9.3E+08	-1 2E+00	0.11607	3 0.11681	0 0 31 1.2E-05			normal
45 2 0	0 1.4		11 45691	-1	-1	1		1 80	0	0	-1	-1	0	-1	-1	43	-1	1	1		62	62	/-	0 4/93.40	0 4/93.4	0	0 0	0	0	0	0	0	17.1193	0.35974	0	5	11	0 21062		5.8E+08	36+09	0.11083	0.11083	0 1.26-05	0 62		anomaly
A7 2	0 1.4		11 10188			1 -		1 80	0	0	-1	-1	0	-1	-1	201	-1	1	- 1	0	62	62		,	0	0 (0 0	0	0	0	0	0	0	0	0	5	11	0		3.8E+08	-1	,		0	0 62		anomaly
-7 2	0 1.4	C103	11 133/3	-1	-			. 0	0	0	-1	-4	U	-4		201	1	100	100	U	62	62			0	0	0	U	0	U	U	U	0	U	J	3	**	U	*4	3.02108	-1	_		4	62	0 8	mornary

The Truth

Test		Has the issue		Does not have the issue							
Scoi		True Positives (TP)	a	b	False Positives (FP)						
	Negative	False Negatives (FN)	С	d	True Negatives (TN)						

$$\mathbf{PPV} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

$$NPV = \frac{TN}{TN + FN}$$

Sensitivity

TP

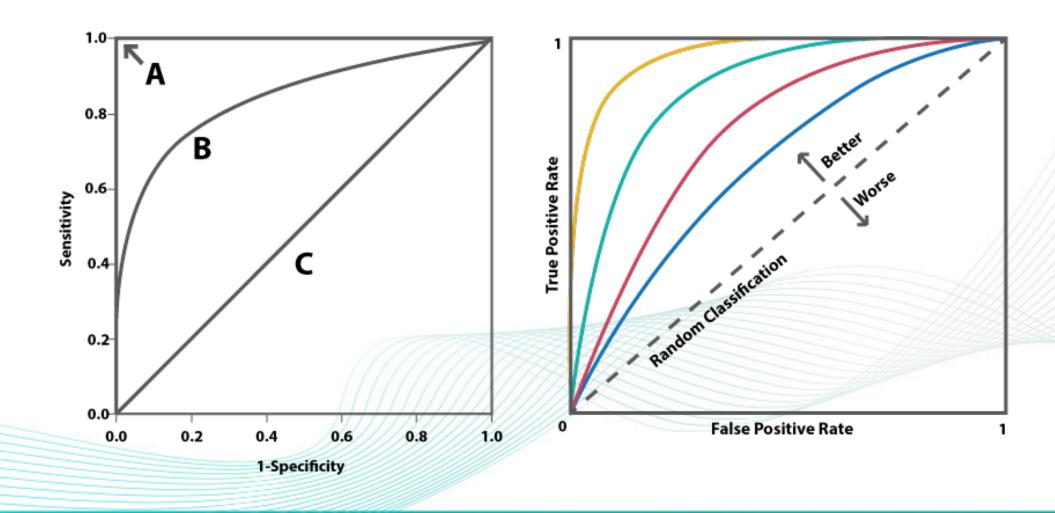
TP

TN

TN+FP

Or,

$$a$$
 $a+c$


TN+FP

 d
 $d+b$

a + c

Receiver Operating Characteristic (ROC) curve

Comparison with traditional systems

Paradigm shift: predicts, prevent, prepare - goes ahead of hackers.

Better accuracy, better performances.

Automatic learning, continual improvement process.

Lightweight maintenance. Removes repetitive work.

Significantly better in handling new threats (zero day).

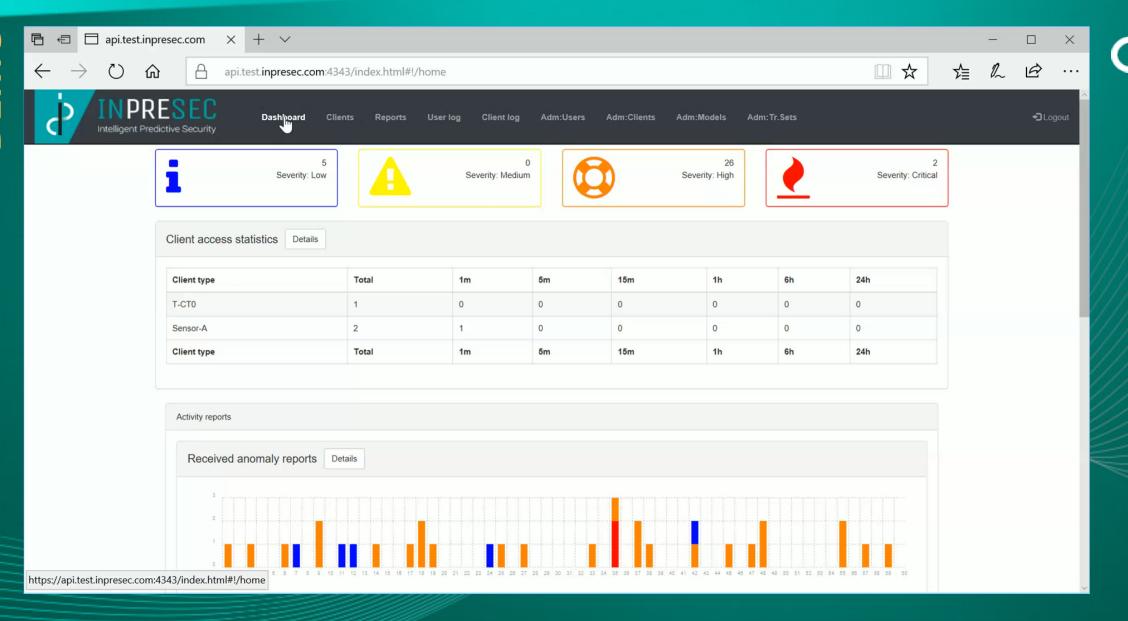
Multilayer / multilevel, assures holistic approach.

 Detects: wide spectra of threats and attacks intrusions, data leak, malware, fraud and other malfunctions.

Prevent

Prepare

Detect


React

One more thing:

 While the role of ML and AI in cybersecurity is certainly in the early stages and still needs to evolve, hackers will quickly learn to turn machine learning into a distinct advantage

=> AI & ML can be misused as new threat attack vector

THANK YOU, QUESTIONS

Contact:

Dragan Pleskonjic, INPRESEC Initiator and Founder

- E-mail: dragan@conwex.org or dragan@inpresec.com
- Twitter: @DPleskonjic
- Personal web site: www.dragan-pleskonjic.com
- LinkedIn profile: https://www.linkedin.com/in/draganpleskonjic/